

EUROPEAN COMMISSION

> Brussels, XXX [...](2018) XXX draft

ANNEX 1

ANNEX

to the

COMMISSION DIRECTIVE (EU) .../...

amending, for the purpose of its adaptation to technical progress, the Annex to Council Directive 80/181/EEC as regards the definitions of SI base units

ANNEX

In the Annex, Chapter I, section 1.1 is replaced by the following:

"1.1. SI base units

Quantity	Unit	
	Name	Symbol
Length	metre	m
Mass	kilogram	kg
Time	second	S
Electric current	ampère	А
Thermodynamic temperature	kelvin	К
Amount of substance	mole	mol
Luminous intensity	candela	cd

Definitions of SI base units:

Unit of length

The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum *c* to be 299 792 458 when expressed in the unit m/s, where the second is defined in terms of Δv_{Cs} .

Unit of mass

The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant *h* to be 6.626 070 15 x 10^{-34} when expressed in the unit J s, which is equal to kg m² s⁻¹, where the metre and the second are defined in terms of *c* and Δv_{Cs} .

Unit of time

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency Δv_{Cs} , the unperturbed ground-state hyperfine transition frequency of the caesium 133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s⁻¹.

Unit of electric current

The ampere, symbol A, is the SI unit of electric current. It is defined by taking the fixed numerical value of the elementary charge *e* to be 1.602 176 634 x 10^{-19} when expressed in the unit C, which is equal to A s, where the second is defined in terms of $\Delta v_{\rm Cs}$.

Unit of thermodynamic temperature

The kelvin, symbol K, is the SI unit of thermodynamic temperature. It is defined by taking the fixed numerical value of the Boltzmann constant k to be 1.380 649 x 10⁻²³

when expressed in the unit J K⁻¹, which is equal to kg m² s⁻² K⁻¹, where the kilogram, metre and second are defined in terms of *h*, *c* and Δv_{Cs} .

Unit of amount of substance

- (1) The mole, symbol mol, is the SI unit of amount of substance. One mole contains exactly 6.022 140 76 x 10^{23} elementary entities. This number is the fixed numerical value of the Avogadro constant, N_A, when expressed in the unit mol⁻¹ and is called the Avogadro number.
- The amount of substance, symbol n, of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles. When the mole is used, the elementary entities must be specified.

Unit of luminous intensity

The candela, symbol cd, is the SI unit of luminous intensity in a given direction. It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 x 10^{12} Hz, K_{cd} , to be 683 when expressed in the unit Im W⁻¹, which is equal to cd sr W⁻¹, or cd sr kg⁻¹ m⁻² s³, where the kilogram, metre and second arc defined in terms of *h*, *c* and Δv_{Cs} .

1.1.1. Special name and symbol of the SI derived unit of temperature for expressing Celsius temperature

Quantity	Unit		
	Name	Symbol	
Celsius temperature	degree Celsius	°C	

Celsius temperature *t* is defined as the difference $t = T - T_0$ between the two thermodynamic temperatures *T* and T_0 where $T_0 = 273,15$ K. An interval or difference of temperature may be expressed either in kelvins or in degrees Celsius. The unit 'degree Celsius' is equal to the unit 'kelvin'."